Coletânea sobre bibliografias referentes à temática Modelagem de Nicho EcológicoAnderson, R. P. 2003. Real vs artefactual absences in species
distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in
Venezuala. 30:591-605. Anderson, R. P., M. Laverde, and A. T. Peterson. 2002a. Geographical
distributions of spiny pocket mice in South America: Insights from
predictive models. Global Ecology and Biogeography 11:131-141. Anderson, R. P., M. Laverde, and A. T. Peterson. 2002b. Using
niche-based GIS modeling to test geographic predictions of competitive
exclusion and competitive release in South American pocket mice. Oikos
93:3-16. Anderson, R. P., D. Lew, and A. T. Peterson. 2003. Evaluating
predictive models of species' distributions: criteria for selecting
optimal models. Ecological Modelling 162:211-232. Anderson, R. P., and E. Martinez-Meyer. 2004. Modeling species'
geographic distributions for preliminary conservation assessments: an
implementation with the spiny pocket mice (Heteromys) of Ecuador.
Biological Conservation 116:167-179. Araújo, M. B., and A. Guisan. 2006. Five (or so) challenges for
species distribution modelling. Journal of Biogegraphy
33:1677-1688. Araújo, M. B., and P. H. Williams. 2000. Selecting areas for species
persistence using occurrence data. Biological Conservation
96:331-345. Austin, M. 2002a. Spatial prediction of species distribution: an
interface between ecological theory and statistical modelling.
Ecological Modelling 157:101-118. Austin, M. P. 2002b. Case studies of the use of environmental
gradients in vegetation and fauna modelling: theory and practice in
Australia and New Zealand. Pages 73-82 in J. M. Scott, P. J. Heglund, F.
Samson, J. Haufler, M. Morrison, M. Raphael, and B. Wall, editors.
Predicting Species Occurences: Issues of Accuracy and Scale. Island
Press, Covelo, CA. Austin, M. P., L. Belbin, J. A. Meyers, M. D. Doherty, and M. Luoto.
2006. Evaluation of statistical models used for predicting plant species
distributions: Role of artificial data and theory. Ecological Modelling
199:197-216. Austin, M. P., A. O. Nicholls, M. D. Doherty, and J. A. Meyers. 1994.
Determining species response functions to an environmental gradient by
means of a beta-function. Journal of Vegetation Science 5:215-228. Barry, S., and J. Elith. 2006. Error and uncertainty in habitat
models. Journal of Applied Ecology 43:413-423. Bazzaz, F. A. 1998. Plant in changing environments: Linking
physiological, population, and comunity ecology. Cambridge University
Press, Cambridge, UK. Bojorquez-Tapia, L. A., I. Azuara, E. Ezcurra, and O. A. Flores V.
1995. Identifying conservation priorities in Mexico through geographic
information systems and modeling. Ecological Applications
5:215-231. Busby, J. R. 1986. A biogeographical analysis of Nothofagus
cunninghamii (Hook.) Oerst. in southeastern Australia. Australian
Journal of Ecology 11:1-7. Carpenter, G., A. N. Gillison, and J. Winter. 1993. DOMAIN: A
flexible modeling procedure for mapping potential distributions of
animals and plants. Biodiversity and Conservation 2:667-680. Chapman, A. D., M. E. S. Munoz, and I. Koch. 2005. Environmental
information: placing biodiversity phenomena in an ecological and
environmental context. Biodiversity Informatics 2:24-41. Chen, G., and A. T. Peterson. 2002. Prioritization of areas in China
for biodiversity conservation based on the distribution of endangered
bird species. Bird Conservation International 12:197-209. Collingham, Y. 2000. Predicting the spatial distribution of
non-indigenous riparian weeds: issues of spatial scale and extent.
37:13-27. Corsi, F., J. de Leeuw, and A. Skidmore. 2000. Modeling species
distribution with GIS. Pages 389-434 in L. Boitani and T. Fuller,
editors. Research Techniques in Animal Ecology. Controversies and
consequences. Columbia University Press, New York. Cristianini, N., and J. Shawe-Taylor. 2000. An Introduction to
Support Vector Machines and other kernel-based learning methods.
Cambridge University Press. DEH. 2004. Normalized Difference Vegetation Index. in. Department of
Environmental and Heritage.
http://www.deh.gov.au/erin/ndvi/ndvi.html. Efron, B. 1979. "Bootstrap Methods: Another Look at the Jackknife".
The Annals of Statistics 7:1-26. Egbert, S. L., M. A. Ortega-Huerta, E. Mart¡nez-Meyer, K. P. Price,
and A. T. Peterson. 2000. Time-series analysis of high-temporal
resolution AVHRR NDVI imagery of Mexico. Pages 1978-1980 in. Egbert, S. L., A. T. Peterson, V. Sanchez-Cordero, and K. P. Price.
1998. Modeling conservation priorities in Veracruz, Mexico. Pages
141-150 in S. Morain, editor. GIS in natural resource management:
Balancing the technical-political equation. High Mountain Press, Santa
Fe, New Mexico. Elith, J., and M. Burgman. 2002. Predictions and their validation:
Rare plants in the Central Highlands, Victoria. in J. M. Scott, P. J.
Heglund, and M. L. Morrison, editors. Predicting Species Occurrences:
Issues of Scale and Accuracy. Island Press, Washington, D.C. Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A.
Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li,
L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y.
Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. S.
Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S.
Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods improve
prediction of species' distributions from occurrence data. Ecography
29:129-151. Elton, C. S. 1927. Animal Ecology. Sidgwich and Jackson, London. Engler, R., A. Guisan, and L. Rechsteiner. 2004. An improved approach
for predicting the the distribution of rare and endangered species from
occurrence and pseudo-absence data. Journal of Applied Ecology
41:263-274. Fawcett, T. 2003. ROC graphs: notes and practical considerations for
data mining researchers. Palo Alto, CA: HP Laboratories. Feria, T. P., and A. T. Peterson. 2002. Prediction of bird community
composition based on point-occurrence data and inferential algorithms: a
valuable tool in biodiversity assessments. Diversity and Distributions
8:49-56. Ferrier, S., and G. Watson. 1996. An evaluation of the effectiveness
of environmental surrogates and modelling techniques in predicting the
distribution of biological diversity. in. Canberra, Australia: NSW
National Parks and Wildlife Service. Ferrier, S., G. Watson, J. Pearce, and M. Drielsma. 2002. Extended
statistical approaches to modelling spatial pattern in biodiversity in
northeast New South Wales. 1. Species-level modeling. Biological
Conservation 11:2275-2307. Fielding, A. H., and J. F. Bell. 1997. A review of methods for the
assessment of prediction errors in conservation presence/absence models.
Environmental Conservation 24:38-49. Gause, G. F. 1934. The struggle for existence. Williams and
Wilkins. Graham, C. H., S. Ferrier, F. Huettman, C. Moritz, and A. T.
Peterson. 2004. New developments in museum-based informatics and
applications in biodiversity analysis. Trends in Ecology & Evolution
19:497-503. Grinnell, J. 1917. Field tests of theories concerning distributional
control. American Naturalist 51:115-128. Guisan, A., T. C. Edwards Jr, and T. Hastie. 2002. Generalized linear
and generalized additive models in studies of species distributions:
setting the scene. Ecological Modelling 157:89-100. Guisan, A., C. H. Graham, J. Elith, and F. Huettmann. 2007.
Sensitivity of predictive species distribution models to change in grain
size. Diversity and Distributions 13:332-340. Guisan, A., and W. Thuiller. 2005. Predicting species distribution:
offering more than simple habitat models. Ecology Letters
8:993-1009. Guisan, A., S. B. Weiss, and A. D. Weiss. 1999. GLM versus CCA
spatial modelling of plant species distribution. 143:107-122. Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat
distribution models in ecology. Ecological Modelling 135:147-186. Hijmans, R. J. 2005. Very high resolution interpolated climate
surfaces for global land areas. 25:1965-1978. Hijmans, R. J., S. Cameron, and J. Parra. 2004. WorldClim, a new
high-resolution global climate database. in Inter-American Workshop on
Environmental Data Access. Hirzel, A. H., and A. Guisan. 2002. Wich is the optimal sampling
strategy for habitat suitability modelling? Ecological Modelling
157:331-341. Hirzel, A. H., J. Hausser, D. Chessel, and N. Perrin. 2002.
Ecological-niche factor analysis: how to compute habitat-suitability
maps without absence data? Ecology 83:2027-2036. Hirzel, A. H., V. Helfer, and F. Metral. 2001. Assessing
habitat-suitability models with a virtual species. Ecological Modelling
145:111-121. Huntley, B., P. M. Berry, W. Cramer, and A. P. McDonald. 1995.
Modelling present and potential future ranges of some European higher
plants using climate response surfaces. JOURNAL OF BIOGEOGRAPHY
22:967-1001. Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor
Symposia on Quantitative Biology 22:415-427. Isaaks, E. H., and R. M. Srivastava. 1989. Applied Geostatistics, 2
edition. Oxford University Press, Oxford. Iwashita, F. 2007. Sensibilidade de modelos de distribuição de
espécies a erros de posicionamento de dados de coleta. master degree.
Instituto de Pesquisas Espaciais - INPE, São José dos Campos, SP. Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005.
Selecting thresholds of occurence in the prediction of species
distributions. Ecography 28:385-393. Magana, V., C. Conde, O. Sanchez, and C. Gay. 1997. Assessment of
current and future regional climate scenarios for Mexico. Climate
research 9:107-114. Manel, S., H. C. Williams, and S. J. Ormerod. 2001. Evaluating
presence-absence models in ecology: the need to account for prevalence.
38:921-931. Metz, C. E. 1986. ROC methodology in radiologic imaging.
Investigative Radiolgy 21:720-733. Netter, J., M. N. Kutner, C. J. Nachtssheim, and W. Wasserman. 1996.
Applied linear statistical models, 4 edition. WCB/McGraw-Hill,
Boston. Nix, H. A. 1986. A biogeographic analysis of Australian elapid
snakes. Pages 4-15 in R. Longmore, editor. Atlas of Australian Elapid
Snakes. Australian Government Publishing Service, Canberra. Oberhauser, K., and A. T. Peterson. 2003. Modelling current and
future potencial wintering distributions of eastern North American
monarch butterflies. PNAS (Proceedings of the National Academy of
Sciences of the United States of America) 100:14063-14068. Oksanen, J., and P. R. Minchin. 2002. Continuum theory revisited:
what shape are species responses along ecological gradients? Ecological
Modelling 157:119-129. Ortega-Huerta, M. A., and A. T. Peterson. 2004. Modelling spatial
patterns of biodiversity for conservation prioritization in
North-eastern Mexico. Diversity and Distributions 10:39-54. Parra, J. L., C. C. Graham, and J. F. Freile. 2004. Evaluating
alternative data sets for ecological niche models of birds in the Andes.
Ecography 27:350-360. Paruelo, J. M., E. G. Jobb gy, and O. E. Sala. 2001. Current
distribution of ecosystem functional types in temperate South America.
Ecosystems 4:683-698. Pearce, J., and S. Ferrier. 2000. Evaluating the predictive
perfomance of habitat models developed using logistic regression.
Ecological Modelling 133:225-245. Pearson, G. R., C. J. Raxworthy, M. Nakamura, and A. T. Peterson.
2006a. Predicting species distributios from small numbers of occurrence
records: a test case using cryptic geckos in Madagascar. Journal of
Biogegraphy 34:102-117. Pearson, R. G., W. Thuiller, M. B. Araújo, E. Martinez, L. Brotons,
C. McClean, L. Miles, P. Segurado, T. Dawson, and D. Lees. 2006b.
Model-based uncertainty in species' range prediction. JOURNAL OF
BIOGEOGRAPHY 33:1704-1711. Pereira, R. S. 2002. Desktop Garp. in. University of Kansas
Biodiversity Research Center, Lawrence, Kansas. Petersen, L. R., and J. T. Roehrig. 2001. West Nile virus: A
reemerging global pathogen. Emerging Infectious Diseases 7:611-614. Peterson, A. T., M. A. Ortega-Huerta, J. Bartley, V. Sanchez-Cordero,
J. Soberón, R. H. Buddemeier, and D. R. B. Stockwell. 2002a. Future
projections for Mexican faunas under global climate change scenarios.
Nature 416:626-629. Peterson, A. T., M. Papes, and D. A. Kluza. 2003a. Predicting the
potential invasive distributions of four alien plant species in North
America. Weed Science 51:863-868. Peterson, A. T., M. Papes, and J. Soberón. 2008. Rethinking receiver
operating characteristic analysis applications in ecological niche
modeling. Ecological Modelling 213:63-72. Peterson, A. T., V. Sanchez-Cordero, C. B. Beard, and J. M. Ramsey.
2002b. Ecologic niche modeling and potential reservoirs for Chagas
disease, Mexico. Emerging Infectious Diseases 8:662-667. Peterson, A. T., R. Scachetti-Pereira, and D. A. Kluza. 2003b.
Assessment of Invasive Invasive Potential of Homalodisca coagulata in
Western North America and South America. Biota Neotropica 3. Peterson, A. T., J. Soberón, and V. Sanchez-Cordero. 1999.
Conservatism of ecological niches in evolutionary time. Science
285:1265-1267. Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum
entropy modeling of species geographic distributions. Ecological
Modelling 190:231-259. Phillips, S. J., M. Dud¡k, and R. E. Schapire. 2004. A maximum
entropy approach to species distribution modeling. Pages 655-662 in
Proceedings of the 21st International Conference on Machine
Learning 21st International Conference on Machine Learning. ACM Press, New
York. Polasky, S., and A. R. Solow. 2001. The value of information in
reserve site selection. Biodiversity and Conservation 10:1051-1058. Raes, N., and H. t. Steege. 2007. A null-model for significance
testing of presence-only species distribution models. Ecography
30:727-736. Reddy, S., and L. M. Dávalos. 2003. Geographical sampling bias and
its implications for conservation priorities in Africa.
30:1719-1727. Roura-Pascual, N., A. SUAREZ, C. G¢mez, P. Pons, Y. Touyama, A. L.
Wild, and A. T. Peterson. 2005. Geographic potential of Argentine ants
(Linepithema humile Mayr) in the face of global climate change.
Proceedings of the Royal Society of London B 271:2527-2535. Rushton, S. P., S. J. Ormerod, and G. Kerby. 2004. New paradigms for
modelling species distributions? Journal of Applied Ecology
41:193-200. Sala, O. E., F. S. Chapin-III, J. J. Armesto, E. Berlow, J.
Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson,
A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. n. Oesterheld, N.
L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000.
Global biodiversity scenarios for the year 2100. Science
287:1770-1774. Scott, J. M., P. J. Heglund, F. Samson, J. Haufler, M. Morrison, M.
Raphael, and B. Wall. 2002. Predicting Species Occurrences: Issues of
Accuracy and Scale. Pages 868 in. Island Press, Covelo, CA. Segurado, P., and M. B. Araújo. 2004. An evaluation of methods for
modelling species distributions. JOURNAL OF BIOGEOGRAPHY
31:1555-1568. Segurado, P., M. B. Araújo, and W. E. Kunin. 2006. Consequences of
spatial autocorrelation for niche-based models. Journal of Applied
Ecology 43:433-444. Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer. 2005. ROCR:
visualizing classifier performance in R. Bioinformatics
21:3940-3941. Siqueira, M. F., and G. Durigan. 2007. Modelagem da distribuição
geográfica de espécies lenhosas de cerrado no Estado de São Paulo.
Revista Brasileira de Botânica 30:239-249. Siqueira, M. F. d., and A. T. Peterson. 2003. Consequences of Global
Climate Change for Geographic Distributions of Cerrado Tree Species.
Biota Neotropica 3. Soberon, J. M., and A. T. Peterson. 2005. Interpretation of models of
fundamental ecological niches and species' distributional areas.
Biodiversity Informatics 2:1-10. Stockwell, D. R. B. 2006. Improving ecological niche models by data
mining large environmental datasets for surrogate models. Ecological
Modelling. Stockwell, D. R. B., and D. Peters. 1999. The GARP modelling system:
Problems and solutions to automated spatial prediction. International
Journal of Geographic Information Systems 13:143-158. Stockwell, D. R. B., and A. T. Peterson. 2002. Effects of sample size
on accuracy of species distribution models. Ecological Modelling
148:1-13. Stoms, D. M., and W. W. Hargrove. 2000. Potential NDVI as a baseline
for monitoring ecosystem functioning. International Journal of Remote
Sensing 21:401-407. Strahler, A. H., W. Lucht, C. B. Shaaf, T. Tsang, F. Gao, X. Li, J.
P. Muller, P. Lewis, and M. J. Barnsley. 1999. MODIS BRDF/Albedo
Product: Algorithm Theoretical Basis Document (Version 5). in. Sutton, T., R. Giovanii, and M. F. Siqueira. 2007. Introducing
openModeller. OSGeo Journal 1:1-6. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont,
Y. C. Collingham, B. F. N. Erasmus, M. F. d. Siqueira, A. Grainger, L.
Hannah, L. Hughes, B. Huntley, A. S. v. Jaarsveld, G. F. Midgley, L.
Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, and S. E.
Williams. 2004. Extinction risk from climate change. Nature
427:145-148. Thuiller, W. 2003. BIOMOD - optimizing prediction of species
distributions and projecting potential future shifts under global
change. Global Change Biology 9:1353-1362. UMD. 2001. AVHRR NDVI Data Set. in. University of Maryland,
http://glcf.umiacs.umd.edu/index.shtml, College Park, Maryland. Vapnik, V. 1995. The Nature of Statistical Learning Theory.
SpringerVerlag. Verhoef, W., M. Menenti, and S. Azzali. 1996. A colour composite of
NOAA-AVHRR-NDVI based on time series analysis (1981-1992). International
Journal of Remote Sensing 17:231-235. Wiley, E. O., K. M. McNyset, A. T. Peterson, and C. R. Robins. 2003.
Niche modeling and geographic range predictions in the marine
environment using a machine-learning algorithm. Oceanography
16:120-127. Yee, T. W., and N. D. Mitchell. 1991. Generalized additive models in
plant ecology. Journal of Vegetation Science 2:587-602. Zaniewski, A. E., A. Lehmann, and J. M. Overton. 2002. Predicting
species spatial distributions using presence-only data: a case study of
native New Zealand ferns. Ecological Modelling 157:261-280. | |
© Centro de Referência em Informação Ambiental, CRIA |